Increasing Peak Capacity in Nontargeted Omics Applications by Combining Full Scan Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography-Mass Spectrometry.
نویسندگان
چکیده
Full scan field asymmetric waveform ion mobility spectrometry (FAIMS) combined with liquid chromatography and mass spectrometry (LC-FAIMS-MS) is shown to enhance peak capacity for omics applications. A miniaturized FAIMS device capable of rapid compensation field scanning has been incorporated into an ultrahigh performance liquid chromatography (UHPLC) and time-of-flight mass spectrometry analysis, allowing the acquisition of full scan FAIMS and MS nested data sets within the time scale of a UHPLC peak. Proof of principle for the potential of scanning LC-FAIMS-MS in omics applications is demonstrated for the nontargeted profiling of human urine using a HILIC column. The high level of orthogonality between FAIMS and MS provides additional unique compound identifiers with detection of features based on retention time, FAIMS dispersion field and compensation field (DF and CF), and mass-to-charge (m/z). Extracted FAIMS full scan data can be matched to standards to aid the identification of unknown analytes. The peak capacity for features detected in human urine using LC-FAIMS-MS was increased approximately threefold compared to LC-MS alone due to a combination of the reduction of chemical noise and separation of coeluting isobaric species across the entire analytical space. The use of FAIMS-selected in source collision induced dissociation (FISCID) yields fragmentation of ions, which reduces sample complexity associated with overlapping fragmentation patterns and provides structural information on the selected precursor ions.
منابع مشابه
Rapid Analysis of Anabolic Steroid Metabolites in Urine by Combining Field Asymmetric Waveform Ion Mobility Spectrometry with Liquid Chromatography and Mass Spectrometry.
The combination of field asymmetric waveform ion mobility spectrometry with liquid chromatography-mass spectrometry (LC-FAIMS-MS) has been developed for the analysis of glucuronide and sulfate metabolites of seven anabolic-androgenic steroids in urine. Separation by FAIMS-MS was investigated in positive ion mode for selected cationic adducts (H+, NH4+, Na+, K+, and Cs+). LC-FAIMS-MS analysis of...
متن کاملLiquid extraction surface analysis field asymmetric waveform ion mobility spectrometry mass spectrometry for the analysis of dried blood spots.
Liquid extraction surface analysis (LESA) is a surface sampling technique that allows electrospray mass spectrometry analysis of a wide range of analytes directly from biological substrates. Here, we present LESA mass spectrometry coupled with high field asymmetric waveform ion mobility spectrometry (FAIMS) for the analysis of dried blood spots on filter paper. Incorporation of FAIMS in the wor...
متن کاملSeparation and Identification of Isomeric Glycopeptides by High Field Asymmetric Waveform Ion Mobility Spectrometry
The analysis of intact glycopeptides by mass spectrometry is challenging due to the numerous possibilities for isomerization, both within the attached glycan and the location of the modification on the peptide backbone. Here, we demonstrate that high field asymmetric wave ion mobility spectrometry (FAIMS), also known as differential ion mobility, is able to separate isomeric O-linked glycopepti...
متن کاملLarge-Scale Analysis of Peptide Sequence Variants: The Case for High-Field Asymmetric Waveform Ion Mobility Spectrometry
Large scale analysis of proteins by mass spectrometry is becoming increasingly routine; however, the presence of peptide isomers remains a significant challenge for both identification and quantitation in proteomics. Classes of isomers include sequence inversions, structural isomers, and localization variants. In many cases, liquid chromatography is inadequate for separation of peptide isomers....
متن کاملSeparation of opiate isomers using electrospray ionization and paper spray coupled to high-field asymmetric waveform ion mobility spectrometry.
One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 89 6 شماره
صفحات -
تاریخ انتشار 2017